垃圾邮件的误判问题一直是反垃圾邮件领域中未能得到根本解决的难点。基于清华大学邮箱系统及反垃圾邮件网关系统进行了一整年的部署和实验(2011年9月至2012年10月),通过用户对可疑垃圾邮件点击召回的历史行为进行分析,并采用对其感兴趣的垃圾邮件进行文本相似度计算以及关键参数预测的方法来智能化预测用户对当前某一封垃圾邮件的感兴趣程度,即基于用户主观的选择和体验来帮助用户自动召回其可能感兴趣、然而却被反垃圾邮件网关误判的垃圾邮件,解决了传统过滤方法无法杜绝误判的问题。