摘要

为了对精密铸件DR(digital radiography)图像中的缺陷进行准确分割,提出一种基于深度学习语义分割的铸件DR图像缺陷检测算法。首先在原始U-Net网络模型上设计混合损失函数,以此来缓解类不平衡问题;然后采用AdamW(Adam with weight decay)优化器使模型加速收敛,同时使检测精度得到提升。最后使用PReLu激活函数代替ReLu,提高模型泛化性。实验结果表明,改进的U-Net模型对精密铸件DR图像缺陷能够得到有效分割,检测精度较高,且模型参数量较少,能够在工业现场进行部署。