基于单细菌共焦拉曼光谱的细菌快速检测

作者:窦雪晨; 蔡田雨; 王冠; 刘培鹏; 李抄; 杜耀华*; 田丰*
来源:微生物学通报, 2022, 49(05): 1581-1593.
DOI:10.13344/j.microbiol.china.210631

摘要

【背景】目前利用共焦拉曼光谱技术进行成像和成分鉴别方面的研究较多,但如何快速检测与鉴别多种细菌方面的研究较少。【目的】基于共焦拉曼光谱技术,建立一种在单细菌水平上实现病原微生物快速分类鉴定的方法。【方法】以大肠杆菌为研究对象,利用共焦拉曼光谱技术在单细菌水平上进行了激发波长的优化试验,并研究了大肠杆菌存放时间对单细菌拉曼光谱信息的影响。同时,对白色葡萄球菌、大肠杆菌、金黄色葡萄球菌、沙门氏菌和铜绿假单胞菌进行了共焦拉曼光谱测试,并对5种细菌进行单细菌拉曼光谱的归属分析,设计共焦拉曼光谱技术结合支持向量机(support vector machine,SVM)模型学习算法,进行了5种细菌的快速分类鉴别。【结果】对于单细菌拉曼光谱探测,532、633和785 nm这3种常见的拉曼探测波长中,532 nm具有更好的激发效率和光谱信噪比。结合SVM模型对5种细菌的识别分类,SVM模型的灵敏度和特异性达到了96.00%以上,整体准确率为98.25%。不同存放时间下大肠杆菌拉曼光谱的重复性和稳定性都很好,且SVM模型匹配率均在90.00%以上。【结论】单细菌拉曼光谱结合SVM模型可对5种细菌进行快速、准确的分类,不同存放时间对大肠杆菌拉曼光谱的归类识别几乎无影响。

全文