摘要
为了实现快速和自动的车辆外观检测,提出一种基于深度学习的车检图像多目标检测与识别方法。首先,采用轻量级神经网络YOLOv3实现车检图像中车头、轮胎、车牌及三角形标志的检测与识别;其次,采用多任务级联卷积神经网络实现车牌4个关键点定位;再次,利用车牌4个关键点坐标,结合目标车牌图像高宽先验,通过透视变换对车牌进行校正;最后,设计卷积神经网络实现车牌底色分类,同时设计卷积循环神经网络,实现车牌字符识别。实验结果表明,在816×612的车检图像上,该方法中端到端的多目标检测与识别的平均精度达98.03%;为便于在车检场景下应用该模型,利用阿里巴巴推理引擎将模型部署到CPU端,使多目标检测与识别的平均速度达10帧/s,从而满足车检的应用需求。
- 单位