摘要

针对现有的轴承故障诊断数据特征提取单一的问题,本文提出了一种基于多尺度卷积神经网络的轴承故障诊断方法,以轴承运行时采集的故障信号为研究对象,使用多个尺寸的卷积核提取原始信号,使提取到的信号更加丰富,有效解决特征提取能力不强的问题,无需人工提取故障特征。试验结果表明,该方法具有较高的轴承故障诊断准确率。