摘要

在智慧医疗中基于知识图谱的问答系统能够根据结构化的医疗知识自动回答自然语言问句,具有重要的研究意义和实际应用价值。当前的问答系统不能有效地处理包含多种意图的复杂问句,导致意图识别不全面或不正确,难以生成高质量的答案。因此,该文提出了基于语义分析和深度学习的复杂问句意图智能理解方法,首先从问句中提取医疗实体并进行依存句法分析,通过句法成分规范化将多意图复杂问句分解成若干属性类或关系类简单问句的组合,然后构建文本分类深度网络模型对每个简单问句进行意图识别,从而实现复杂问句的意图理解。为了验证该文方法的有效性和实用性,该文构建了包含6类约14万个实体的医疗知识图谱,用所提出的意图理解方法为核心开发了基于知识图谱的医疗咨询智能问答系统,根据问句意图将相应的核心实体和关系谓词转化为知识图谱检索语句,并通过检索到的相关知识生成自然语言答案。对真实医疗咨询问句测试的结果表明,该文方法可以有效地理解复杂问句的多种意图,相应的问答系统能够更全面、准确地回答与疾病、症状、药品等相关的医疗咨询问句。