摘要
针对轴承故障诊断中数据集较小,现有诊断方法鲁棒性较低且易被噪声干扰的难题,提出了基于特征增强和卷积神经网络故障识别方法。首先对振动采样信号进行短时傅里叶变换(STFT)与小波变换处理,获取时频图,然后对时频图进行卷积操作,获取故障信号特征图。最后,将获得的特征图通过通道注意力机制模块,再通过卷积神经网络,实现对轴承故障的分类。结果表明,该方法在西储大学数据集添加-40 dB噪声的情况下,故障准确率达97%,在西储大学数据集以及江南大学离心风机轴承数据集上识别准确率分别为99.8%和100%。
- 单位