摘要

针对极限学习机隐含层节点数需人为设定,分类的准确性与稳定性较差,核极限学习机(K-ELM)对核函数选取要求较高,单一核函数难以对非线性样本充分学习、泛化性仍有不足等缺点,提出一种基于多尺度排列熵(MPE)和非线性加权组合的双核极限学习机(DK-ELM)的滚动轴承故障诊断方法并证明了其可行性与优越性。首先,计算不同故障状态轴承信号的多尺度排列熵,获取一系列无量纲特征;然后,利用双核函数计算其高维特征向量集并输入DK-ELM中建立轴承信号状态分类模型,对不同状态的轴承信号进行分类。实验结果证明,核函数的引入可以有效提高ELM分类性能,DK-ELM的分类模型比支持向量机(SVM)、ELM以及各单核极限学习机具有更高的分类精度,而且对训练样本数量较少的情况有更好的分类效果。

全文