摘要
针对全流量检测方式容易使安全检测设备出现性能瓶颈的问题,给出一种使用改进的野狗优化算法来优化径向基函数神经网络的正常流量过滤方法。首先,采用Singer混沌映射和搜索平衡策略对野狗优化算法进行改进;其次,用改进后的野狗优化算法优化RBF神经网络的输出权值,使用CSE-CIC-IDS2018数据集训练网络,构建正常流量过滤模型;最后,在网络流量进入安全检测设备前尽可能多地过滤掉其中正常流量,减轻安全检测设备的工作负担。实验结果表明:与现有的模型相比,IDOA-RBF神经网络的正常流量过滤模型在建模时间上有较大的改善,同时保持较高的识别精度,并且能在需要检测的流量中过滤掉72.9%的正常流量。
- 单位