行星齿轮箱振动信号在各频段的能量分布与其故障类型有关。利用Daubecics小波包将不同故障的振动信号分解到各个频带。BP神经网络的输入是各频带的能量——行星齿轮故障的特征向量,用神经网络识别故障类型。通过实验验证了该方法可以快速、准确地进行故障模式识别,达到良好的预期效果。利用此方法可以有效解决武装直升机武器系统复杂故障现象问题。