摘要

随着我国公路隧道由建设为主朝建养并重转化,在运营里程快速增长与既有隧道劣化加剧的双重作用下,移动检测及结构安全快速诊断已成为目前公路隧道运营维养领域的研究热点之一。我国已研发了多种类型的隧道检测车,为裂缝、渗漏水等表观病害的快速检测提供了手段,然而公路隧道衬砌图像背景复杂、干扰因素多、裂缝占比小的特点,给检测数据的快速分析带来巨大挑战,已成为制约技术推广的主要瓶颈。基于深度学习算法,本文提出了一种将目标识别与语义分割进行组合的裂缝快速提取方法,首先采用Faster R-CNN网络对原始衬砌图像进行目标识别,判定所采集图片是否存在裂缝并智能框选出裂缝区域;随后对框选出的裂缝区域自动裁切,由此过滤不含裂缝的图片并去除含裂缝图片中的干扰背景,再利用U-Net语义分割网络对裂缝进行像素级分割。通过实际工程验证发现,单幅图像裂缝整体分割时间小于0.15 s,在常见各类干扰因素下,目标识别F1值可达到92%,语义分割像素准确度可达到98%以上。与阈值分割和同类智能分割算法相比,本方法显著提高了识别速度与精度,为从隧道检测车海量数据中进行快速准确的裂缝提取提供了良好手段。

  • 单位
    岩土及地下工程教育部重点实验室; 土木工程学院; 同济大学; 浙江省交通运输科学研究院