摘要

使用搭载YOLOv5算法的无人机对物体进行目标检测时,由于其权重文件占有较大内存而要求无人机有较高的硬件配置,这在很大程度上约束了无人机进行目标检测的发展。为了解决这一问题,提出了一种改进的YOLOv5算法。使用深度可分离卷积代替普通卷积层,以使YOLOv5s轻量化。由于无人机从空中俯瞰物体,拍摄的图片具有较大的视野,因此将Dropblock与注意力机制添加至YOLOv5s主卷积层的底层来增加YOLOv5s的泛化能力与识别能力,进而提高YOLOv5s的小目标检测能力。使用所提方法对车辆数据集进行训练,获得了83%的训练准确率,并通过对比试验证明了所提方法比原始YOLOv5s具有更强的小目标检测能力。