摘要
【目的】第四系土体是土质滑坡的主要物源,其分布及厚度是开展土质滑坡隐患识别的重要基础。随着机器学习技术的兴起,图像分类技术与人工智能算法结合已成为遥感识别的主流。【方法】本文以三峡库首秭归向斜盆地为研究区,以Landsat-8影像为基础数据源,以区内现有土质滑坡数据构建样本,采用机器学习软件EnMAP-Box,建立第四系厚度及空间分布信息的随机森林分类模型,筛选出用于识别第四系土体厚度的最优特征子集,得出第四系相对厚度空间分布。【结果】结果表明:Landsat-8遥感影像的光谱特征、主成分、植被指数、湿度、坡度、绿度、均值等与第四系厚度具有强相关性,可作为识别第四系土体厚度的重要特征因子;随机森林模型能有效识别第四系土体厚度信息,且对岩质区提取精度较高;经实地调查验证,模型性能均衡,预测结果合理,可用于多植被中低山区环境的第四系识别。【结论】研究成果可为土质滑坡隐患识别和风险防控提供重要数据支撑。
- 单位