摘要

为研究主动遥感进行森林地物分类和林隙提取的效果,分别在天然林和人工林中比较了无人机激光雷达(Li DAR)数据的阈值法、逐像元法和面向对象法3种方法的分类精度和适用性。选取天然林(黑龙江省哈尔滨市帽儿山林场)和人工林(内蒙古自治区赤峰市旺业甸林场)两处试验区,应用阈值法、逐像元法和面向对象法3种方法,对两个试验区采集的无人机Li DAR数据进行林隙、非林隙、其他类型划分。研究结果表明,面向对象法在天然林和人工林试验区中的分类精度和Kappa系数均最高,天然林为82. 43%、0. 73,人工林为91. 74%、0. 88;逐像元法次之,天然林为76. 62%、0. 64,人工林为78. 68%、0. 68;阈值法的分类精度和Kappa系数差异较大,在天然林中的精度极低,为50. 54%、0. 27,人工林的精度较高,为79. 12%、0. 69。面向对象法和逐像元法在天然林和人工林普遍适用,均可以达到理想的分类精度和Kappa系数。阈值法在天然林的精度较低,更适合于人工林的分类,即林分高度趋于一致,且建筑、道路等其他类型干扰较少的区域。天然林的最佳分类方法为面向对象法,人工林的最佳分类方法为阈值法。