摘要

针对传统的数据驱动方法偏最小二乘法(PLS)中存在的多模态数据故障检测效果不佳的问题,提出了一种新的故障检测方法——基于局部近邻标准化(LNS)的PLS(LNS-PLS)。首先,利用LNS方法对原始数据进行高斯化处理,在此基础上建立PLS的监控模型,确定T2和平方预测误差(SPE)的控制限;其次,对测试数据同样进行LNS标准化处理,再计算出测试数据的PLS监控指标来进行过程监视及故障检测,解决了PLS中无法处理多模态的问题。将所提方法应用于数值例子和青霉素生产过程,并将其测试结果与主成分分析(PCA)、K最近邻(KNN)、PLS等方法进行对比分析。实验结果表明,所提方法的故障检测效果优于PLS、KNN、PCA,该方法在分类及多模态过程故障检测方面有较高的准确性。