摘要
为对新增车辆的通行拥堵进行预测,首先使用K-Medoids聚类算法将交通流运行状态划分为顺畅、阻滞、拥堵三类,然后引入交通流特征参数构建累积Logistic回归模型量化新增车辆对路段运行状态的影响,最后基于支持向量回归机预测新增车辆通行时间。研究结果表明:当只考虑车流量、限行时段和二者之间的交互作用时,模型预测道路状态的正确率达到82.36%,此时车流量在非限行时段每增加一辆车,发生比从顺畅状态转为非顺畅状态的概率是原来的1.087倍;当考虑车流量、黄牌车比例、限行时段、外地车比例及后两者的交互作用时,模型预测通行时间MSE最小,预测效果最优。