摘要

目前无线通信网络频谱环境时空分布复杂多变,现有多用户协同感知方法数据预处理繁琐,感知效率低下。为此,在由用户感知层和边缘融合层构成的系统架构下,提出了一种基于协同学习的频谱智能感知算法。用户感知层采用多分支卷积循环门控神经网络,利用原始归一化能量信号的底层结构信息,实现本地感知。边缘融合层基于自注意力机制进行消息传播,融合用户感知层中各个非授权用户的感知结果得出最终决策。实验表明,在信噪比为-20 dB以及5个用户协同感知的情况下,该方法能在虚警概率为1.91%时达到18.3%的检测概率,相比对比模型提升了6.1%,且不需要对原始数据额外预处理,降低了算法的复杂度。

全文