摘要
地上生物量(AGB)是作物长势评价及产量预测的重要指标,因此快速准确地估算AGB至关重要。由于传统植被指数(VIs)估算多生育期的AGB存在饱和现象,因此,利用VIs结合基于离散小波转换(DWT)的影像小波分解(IWD)技术提取的高频信息和连续小波转换(CWT)技术提取的小波系数,探究VIs,VIs+IWD和VIs+CWT对于AGB的估算能力。首先,基于无人机平台分别获取马铃薯现蕾期、块茎形成期、块茎增长期、淀粉积累期的数码影像和成像高光谱影像以及地面实测的AGB数据。其次,利用数码影像通过IWD技术提取3种高频信息和利用高光谱反射率数据通过CWT技术提取小波系数以及构建6种高光谱植被指数。然后,将植被指数、高频信息和小波系数分别与AGB进行相关性分析,并挑选出不同尺度下相关系数绝对值较高的前10波段。最后,以VIs,VIs+IWD和VIs+CWT这3种变量分别使用偏最小二乘回归(PLSR)方法构建AGB估算模型,并对比不同模型估算AGB的效果。结果表明:(1)每个生育期选取的6种植被指数、3种高频信息和10种小波系数与AGB的相关性均达到0.01显著水平,整个生育期相关性均呈现先升高后降低的趋势,其中以小波系数得到的相关性最高、高频信息次之,植被指数最低。(2)对比分析每个生育期的3种估算模型,以VIs+CWT为输入变量的估算效果最好,VIs+IWD的估算效果次之,而VIs的估算效果最差,说明基于小波分析构建的模型适用性较广、稳定性较强。(3)每个生育期分别以3种变量利用PLSR方法构建的AGB估算模型均在块茎增长期达到最高精度(VIs:建模R2=0.70,RMSE=98.88kg·hm-12,NRMSE=11.63%;VIs+IWD:建模R2=0.78,RMSE=86.45kg·hm-12,NRMSE=10.17%;VIs+CWT:建模R2=0.85,RMSE=74.25kg·hm-12,NRMSE=9.27%)。通过VIs分别结合IWD和CWT技术利用PLSR建模方法,可以提高AGB估算精度,为农业指导管理提供可靠参考。
-
单位农业部; 山东科技大学; 国家农业信息化工程技术研究中心; 河南工程学院; 北京农业信息技术研究中心; 土木工程学院