摘要

针对跌倒对老年人安全性问题造成的影响,以及现有目标检测模型在人物跌倒时易漏检、鲁棒性和泛化能力差等问题,对YOLOv5s算法进行优化,提出一种老人跌倒检测算法。使用改进的RepVGG模块代替YOLOv5s算法中的3×3卷积模块,优化损失函数,选择K-means++算法对所用数据集进行聚类优化。结果表明,所提算法的鲁棒性好、泛化能力强,平均准确率比YOLOv3,YOLOv4,YOLOv5s, CBAM-YOLOv5s模型分别提高了9%,8%,3%和1.2%。所提出的算法能够满足现实中不同场景对老人跌倒行为的检测需求,可以应用于移动设备或者监控设备中,在老年人安全保障领域发挥重要作用。