摘要

为有效识别矿工不安全行为,预防煤矿安全事故,提出融合深度学习的计算机视觉、表示深度信息的深度图像、可穿戴传感器等人工智能识别技术的方法。基于以上3种方法在人体行为识别上的应用特点,运用主成分分析法(PCA)将3种识别技术提取的行为特征降维融合,通过支持向量机(SVM)对融合特征进行分类;以矿工跌倒行为数据为正样本,走路、坐下、弯腰、下蹲、躺下等5种日常行为数据作为负样本,分别利用3种人工智能识别方法以及融合方法对矿工跌倒行为进行识别检验。结果表明:经过融合后的识别方法对矿工跌倒行为的识别效果均高于其他3种人工智能识别方法。

全文