当前函数型数据分析更多关注于函数的振幅变化而忽略相位变化,很多场合下,相位变化中含有对统计分析有用的信息。基于偏最小二乘法提出了相幅组合的函数型数据特征提取方法,首先使用函数对齐技术获得刻画相位变化的时间弯曲函数,再将对齐函数和弯曲函数通过分段函数的方式重新组合,最后利用偏最小二乘法提取相幅组合函数的成分特征,并应用在回归和分类模型上。实验结果表明,与主成分分析方法相比,所提方法具有更优越的预测性能。