摘要
为了降低心肌梗塞患者伴有并发症的发生率,利用机器学习方法构建心肌梗塞并发症预测模型,以心肌梗塞患者的医疗数据作为输入,以心肌梗塞患者的并发症类型作为输出,辅助临床医务人员早期判断,提前采取必要的干预措施。研究结果表明,Linear_SVM模型的整体预测性能优于MLP模型和RBF_SVM模型,其预测准确率为76.28%,特别是在心房纤颤、三度房室传导阻滞、心肌破裂和心肌梗死后综合征上表现出较好的预测效果。
-
单位自贡市第一人民医院