摘要
模拟法应用专业软件,可准确计算动态能耗,但输入参数烦琐且建筑几何模型确定后往往无法更改;数据挖掘法计算速度快,适用条件多样,但是需要长时间历史数据进行训练,效果受样本数据限制.针对以上问题,提出一种基于庞大算例变量提取的办公建筑能耗预测模型,利用EnergyPlus建立批量典型建筑模型,调整建筑参数生成百万条数据作为训练数据集;采用LightGBM算法,筛选影响负荷的特征因素,构建负荷预测模型;结合EnergyPlus中空调设备能耗计算模型,应用python编译实现能耗预测,并在北京某办公建筑中进行应用和验证.结果表明,筛选的24维特征变量,可保证模型预测准确度在90%以上,逐日能耗的预测平均相对误差为8.27%.应用标准年气象参数计算全年建筑能耗,逐月平均相对误差为10.37%,建筑实际能耗指标为35.20 kW·h/(m2·a),预测能耗指标为36.25 kW·h/(m2·a),相对误差为2.98%.
- 单位