针对背景差分法不能提取出目标的完整区域,大多数光流法计算耗时等问题,提出基于卡尔曼滤波的高斯混合模型目标检测算法。首先采用卡尔曼滤波背景建模法对输入的前景信息进行滤波,得到预测背景模型并更新;根据规定的高斯模型表征图像中各个像素点的均值、方差和权值,在输入下一帧图像后重新计算混合高斯背景模型;设置合适的阈值,比较权值与方差的比例确定前景目标像素点。仿真结果表明,与经典算法相比,该算法可以实时准确地检测运动目标,对场景变化、目标移动情况具有较好的鲁棒性。