摘要

近年来,路径规划作为移动机器人技术研究中的一个重要领域而备受关注。针对传统蚁群算法在搜索过程中存在容易陷入局部最优并且收敛速度慢的缺陷,借鉴狼群分配原则改进信息素的更新方式,加快了算法的收敛速度。随后,针对传统蚁群算法对动态路径适应性低的问题,基于预测控制理论,在路径规划过程中加入滚动窗口,能使移动机器人更好地避开环境中的动态障碍物。仿真结果表明,改进后的算法更加适合移动机器人实际所处环境的路径规划。