摘要
当前小目标检测算法的实现方式主要是设计各种特征融合模块,检测效果和模型复杂度很难达到平衡。此外,与常规目标相比,小目标信息量少,特征难以提取。为了克服这两个问题,采用了一种不降维局部跨通道交互策略的通道注意力模块,实现通道间的信息关联,通过对每个通道的特征进行权重分配来学习不同通道间特征的相关性。同时,加入改进的特征融合模块,使网络可以使用低层和高层的特征进行多尺度目标检测,提升了以低层特征为主要检测依据的小目标检测精度。骨干网络采用特征表达能力强和速度快的ResNet,在获取更多网络特征的同时保证了网络的收敛性。损失函数采用Focal Loss,减少易分类样本的权重,使得模型在训练时更关注于难分类样本的分类。该算法框架在VOC数据集上的mAP为82.7%,在航拍数据集上的mAP为86.8%。
- 单位