摘要

热误差作为影响数控插齿机加工精度的重要因素之一,而目前有关插齿机的热误差补偿相关资料欠缺。提出基于GA-BP神经网络的机床热误差优化建模方法,针对插齿机减少其热误差,提高加工精度。针对神经网络算法较多,但补偿效果仍存差距,因此比较了遗传算法(GA)和BP神经网络算法,介绍GA-BP神经网络模型的具体步骤,以YKS5132DX3型数控插齿机为实验对象,获得了敏感点温度和主轴X、Y方向的热误差值,在此基础上,建立BP神经网络热误差预测模型和GA-BP网络热误差优化模型。实验结果表明:与BP神经网络热误差模型相比,GA-BP神经网络热误差模型的预测精度更高,残差变化幅度较平稳,稳健性强。