摘要
随着高光谱影像空间分辨率的提高,"同谱异物"和"同谱异物"问题日益凸显,传统基于纯光谱的地物分类方法已不能满足识别精度要求。结合光谱与空间信息进行高光谱影像分类已成为领域研究热点。鉴于此,该文提出了一种基于扩展多属性剖面(Extended Multi-Attribute Profiles,EMAPs)和指引双边滤波的高光谱影像地物分类方法。首先,基于EMAPs提取高光谱影像4种属性的形态学纹理特征,通过级联纹理与光谱特征获得新特征矢量。其次,对获取的新特征进行降维,并采用指引双边滤波器滤除降维影像的噪声,同时保持影像的边缘信息。最后,采用支持向量机实现分类。高光谱影像分类实验表明,所提方法性能优于多种光谱与空间结合的分类方法。
-
单位通信与信息工程学院; 上海大学