摘要
为解决现有三视场星图识别算法效率慢、识别正确率低的问题,提出了一种面向三视场星敏感器的多级星图识别算法:第一阶段利用单一可调参数的广义回归神经网络分别识别三幅单视场星图;第二阶段利用星库中存储的星间角距信息检验导航星识别结果,再以正确识别的导航星信息计算星敏感器的3个视轴指向;第三阶段利用视轴指向辅助未识别与识别错误的导航星完成识别与校正;最终,以三视场内正确识别的导航星精确估计飞行器姿态信息。仿真结果表明,当星点质心定位误差的标准差达到0.07像素时,该星图识别算法对实验样本的识别正确率仍高达98.9%,而识别时间仅为8.464 5 ms。同时,由于提供求解姿态的星点信息较多且分布更广泛,飞行器的三轴姿态估计精度也随之提高。三视场星敏感器估计的飞行器偏航、俯仰、和滚转轴姿态精度分别为1.205 8″,1.086 7″以及1.201 8″。
-
单位自动化学院; 西北工业大学