摘要

针对传统风电机轴承故障检测存在的采样数据量大、故障特征依赖主观选取的问题,提出了风电机轴承故障的信号压缩采集、自动提取特征及故障诊断的方法,解决了风电机轴承振动信号特征提取计算复杂、受先验知识影响较大的问题。首先基于梯度加速法(NAG)和QR分解理论对随机高斯观测矩阵进行优化,实现风电机轴承振动信号压缩采集;然后将压缩采集得到的数据作为卷积神经网络(CNN)的输入,利用卷积池化层提取压缩采集数据中的故障特征;最后,将得到的故障特征通过softmax分类器进行分类。仿真实验表明:该方法能够自动提取风电机轴承的故障特征,在保证较高故障诊断准确率的同时,缩短了网络训练时间。

全文