摘要

智能电表的推广和安装,使用户侧累积了海量用电数据。特征提取和聚类分析作为有效的数据处理手段,有助于挖掘用电数据中隐藏的宝贵信息,提取用户的用电行为特性。为提取有效直观的负荷特性,本文提出利用优化SAX和带权负荷指标的AP聚类算法,对负荷曲线进行聚类。针对AP聚类复杂度较高的问题,首先利用SAX算法对负荷曲线进行降维并提取特征,利用基于模拟退火粒子群算法,优化确定合理的字符数和状态数;然后结合负荷特性指标,运用改进AP聚类算法,对负荷曲线进行聚类,聚类过程中采用熵权法对负荷特性指标进行客观赋权,避免指标设置的主观性。基于聚类结果,对各类用户的用电行为以及需求响应潜力进行分析。案例分析验证了该算法的高效性和有效性,并可应用于电网公司决策,如负荷预测、异常检测和提供差异化服务等。

  • 单位
    输配电装备及系统安全与新技术国家重点实验室; 重庆大学

全文