摘要

针对现有短视频推荐准确率不高的问题,提出一种融合视频内容与弹幕文本分析的短视频推荐方法。该推荐方法中首先采用LDA模型提取弹幕文本主题,然后提取出短视频内容特征,再根据短视频的高光时刻生成候选推荐列表;在候选推荐列表生成基础上,运用RNN对用户的长期兴趣进行建模,使用门控单元GRU处理短期兴趣,最终提出了一种结合长短期的短视频推荐模型,对用户进行推荐。结果证明,深度学习方法可最大化地获取短视频的内容特征,提高处理效率;结合用户长短期兴趣的短视频推荐模型在准确率、召回率以及MRR平均倒数排名等评价指标上优于其他目前使用广泛的推荐模型。由此说明,提出的推荐方法,可以更好地运用在实际推荐中。

  • 单位
    西安翻译学院

全文