摘要
为了解决U-net网络进行X光胸片肺野分割时,受限于特征提取能力不足导致分割结果不精确的问题,提出一种多尺度残差注意力U型网络(MRAU-net)模型.利用多尺度信息融合(MIF)模块,改善网络结构,增加对多尺度信息的获取;利用通道和空间双注意力(CSDA)模块,解决网络在有限算力下的信息过载问题.同时,对残差模块进行改进,并与U-net网络进行深度结合,提升网络的学习稳定性,缓解梯度消失和过拟合现象.实验结果表明:文中方法具有优秀的X光胸片肺野分割能力,能获得更精确的分割结果.
- 单位