摘要
对比学习作为一种自监督式的深度学习范式,在计算机视觉、自然语言处理等领域取得了瞩目的成绩。受这些成功的对比学习模型的启发,近年来大量研究者尝试将其拓展到图数据上,这为推动图对比学习的发展提供了坚实的基础。该领域现有的综述主要关注于传统的图自监督学习任务,而缺少对图对比学习方法的梳理和归纳。为了更好地帮助相关领域的研究者,该文梳理了近些年来的图对比学习模型,通过将现有工作归纳到一个统一的框架下,突出其发展脉络。最后该文总结了图对比学习常用的数据集和评价指标,并展望了该领域未来的发展方向。
- 单位