摘要

煤机设备滚动轴承早期故障特征微弱,且易受载荷、工况等因素的影响而被噪声淹没,导致轴承故障诊断困难。现有研究大多采用单一算法处理轴承故障信号,故障特征提取精度和故障诊断准确性有待进一步提高。提出了一种融合局部特征尺度分解(LCD)和奇异值分解(SVD)的煤机设备轴承故障诊断方法:采用LCD方法将煤机设备轴承振动信号分解为若干个内凛尺度分量(ISC),实现信号初步降噪;计算各ISC的香农熵,选择香农熵最小的ISC进行SVD,并构建SVD信号的奇异值差分谱,针对最大突变分量进行信号重构,实现信号增强去噪;对重构信号进行Hilbert包络解调,得到轴承故障特征频率,进而判断轴承故障。采用现场实测数据对基于LCD-SVD的煤机设备轴承故障诊断方法进行验证,结果表明,该方法可准确提取出轴承故障特征频率,从而实现煤机设备轴承早期故障诊断。

全文