摘要

后验分布是贝叶斯推理的本质,所有进一步的贝叶斯推断均可通过后验分布来完成.然而,应用统计实践中利用Bayes定理得到的后验密度经常是半共轭乃至复杂的、高维的.马氏链式蒙特卡洛(MCMC)方法为解决此问题提供了很好的思路.主要研究基于马氏链的蒙特卡洛采样技术基本算法和实现策略.