摘要
建立科学合理的中长期电力需求预测方法,是电力产业科学规划建设的前提。构建了基于高斯过程(GPR)和粒子群(PSO)的混合电力需求预测模型。采用PSO算法对协方差函数中的参数进行优化,将修正后的参数作为初始值在GPR模型中进行电力需求方面的培训。在贝叶斯框架下,对协方差函数中的参数再次进行优化。用训练好的GPR模型进行电力需求预测,并将结果与自回归积分移动平均模型和指数平滑模型进行比较。验证结果表明,基于高斯过程(GPR)和粒子群(PSO)的混合电力需求预测模型具有很好的稳定性和更高的预测精度。
- 单位