摘要
为了降低计算任务的时延和系统的成本,移动边缘计算(MEC)被用于车辆网络,以进一步改善车辆服务。该文在考虑计算资源的情况下对车辆网络时延问题进行研究,提出一种多平台卸载智能资源分配算法,对计算资源进行分配,以提高下一代车辆网络的性能。该算法首先使用K临近(KNN)算法对计算任务的卸载平台(云计算、移动边缘计算、本地计算)进行选择,然后在考虑非本地计算资源分配和系统复杂性的情况下,使用强化学习方法,以有效解决使用移动边缘计算的车辆网络中的资源分配问题。仿真结果表明,与任务全部卸载到本地或MEC服务器等基准算法相比,提出的多平台卸载智能资源分配算法实现了时延成本的显著降低,平均可节省系统总成本达80%。
-
单位重庆邮电大学; 通信与信息工程学院