摘要

针对传统差分进化算法存在早熟收敛和求解精度低的缺点,研究了一种自适应控制参数的差分进化算法。通过引入自适应控制变量因子、自适应缩放因子和交叉因子使种群不断地向更新成功的个体学习,促进了后续种群的进化。对于颗粒粒径分布服从高斯分布、R-R(Rosin-Rammler)分布以及对数正态分布的3种典型颗粒系进行数值模拟,研究算例发现,改进差分进化算法反演得出分布参数值■,K的误差小于5%,体积中位径相比于设定分布的误差小于5%,因此,改进差分进化算法具有较强的稳定性与抗噪性。

全文