摘要

在基于高分辨率遥感影像的道路提取中,阴影遮挡是导致提取的部分或整段道路缺失的重要因素,严重制约了道路提取的自动化过程,因此探索适用性强的阴影情况下道路提取方法对地图数据生产和地理大数据研究具有重要意义。本文针对传统的阴影系数修正方法难以消除植被、建筑上的阴影对道路提取带来的干扰,选用路面颜色不一、地物干扰少的郊区影像与地物丰富、路面地物阴影干扰严重的市区影像开展研究,提出了基于亮度补偿的阴影遮挡道路的提取方法。首先,在图像预处理的基础上,利用HSI阈值分割获取阴影区域;其次,在削弱蓝色分量信息后采用亮度补偿方法实现像素点空间域增强以及阴影区信息的恢复,在增大道路面阴影与周围环境差异的基础上,借助高效的分割算法实现阴影道路提取;最后,通过和由K-means聚类分割获取的非阴影道路进行合并,经细化处理最终实现阴影遮挡道路的完整提取。实验结果表明,此方法提取郊区与市区影像中阴影道路的正确率在80%以上,该方法能有效地提取阴影遮挡道路,消除其他阴影的干扰,降低阴影道路提取时的斑块破碎度,较好的保留道路的主体。