摘要
针对海鸥算法(SOA)在求解最优化问题中的不足和算法性能依赖于参数的选取等缺点,提出一种基于惯性权重的海鸥优化算法(Inertia Seagull optimization algorithm,I-SOA),采用非线性递减的惯性权重计算附加变量A的值来调整的海鸥的位置,通过莱维飞行和随机指数值增加海鸥飞行的随机性,增强算法搜索寻优的全局能力,避免算法寻优搜索陷入局部优值;通过12个基准测试函数将I-SOA与标准PSO,SOA,GA算法进行测试比较。实验对比结果表明,所提出的I-SOA优化算法具有较快的收敛速度、较高的求解精度和全局收敛能力。
- 单位