为提高群体活动场景下细粒度人体姿态估计的准确率,优化网路中人体识别及姿态估计算法,在现有研究的基础上,提出一种结合多尺度预测以及改进并行注意力模块的多目标人体姿态估计算法。在充分利用不同尺度特征信息的基础上,实现高质量的人体姿态估计;针对运动场景下多目标人体姿态数据集较少,提出一种数据集CUPB Sport Dataset。实验结果表明,该算法在公开基准数据集和自制数据集上分别达到了81.4 mAP和79.7 mAP,验证了该算法在运动场景下针对多目标的高效性。