摘要

船用机械振动信号存在非线性、非平稳性问题,故障特征难提取,通过变分模态分解(variational mode decomposition, VMD)多尺度排列熵(multiscale permutation entropy, MPE)与支持向量机(support vector machine, SVM)融合的故障诊断方法,对振动信号进行研究。以空压机为例,首先,模拟6种空压机工况,对各工况的热工参数进行测试,分析各工况热工参数的变化程度,并采集的振动信号进行频域分析。然后通过VMD对振动信号进行分解,得到一系列固有模态分量,计算与原始信号的互相关系数筛选敏感固有模态分量。最后计算出敏感固有模态分量的多尺度排列熵,将其作为特征向量,输入到SVM中,进行故障辨识。实验结果表明:VMD多尺度排列熵与SVM融合的空压机故障辨识方法,能有效地识别故障类型,整体准确率可保持在98.6667%,将此方法其他方法进行对比,证明了此方法的有效性。