结合"比例-积分-微分"优化控制器(Proportional-Integral-Derivative Controller, PID)与拟牛顿方法,提出一种加速神经网络训练的一类预条件动量梯度算法。首先,采用拟牛顿条件产生预条件因子,然后,在迭代过程中与动量方法相结合,提高算法效率的同时,克服原始动量梯度算法的超调问题,并证明了算法在目标函数强凸时的全局收敛性。最后,通过数值实验验证了算法的有效性。