提出了一种基于SVM特征选择和C4.5数据挖掘算法的高效入侵检测模型.通过使用该模型对经过特征提取后的攻击数据的训练学习,可以有效地识别各种入侵,并提高检测速度.在经典的KDD 1999入侵检测数据集上的测试说明:该数据挖掘模型能够高效地对攻击模式进行训练学习,能够采用选择的特征正确有效地检测网络攻击.