摘要

针对基于卷积神经网络的行人重识别算法全局信息建模不足的问题,分析了卷积操作的局限性,提出一种基于Transformer改进的全局-局部两分支行人重识别算法.首先利用相对位置编码改进多头自注意力机制,并将其嵌入到Resnet50骨干网络中.之后在全局分支中对图像进行空间几何划分并利用Transformer的全局感受野增强抽象特征的提取能力;在局部分支中对Layer_3输出进行降维监督,利用多尺度池化获得更丰富的局部特征.实验结果表明,该算法在公开数据集Market-1501和DukeMTMC-reID上的mAP/Rank-1分别达到了93.45%/95.61%和88.79%/90.35%,相对于单纯基于卷积神经网络的算法,本文算法达到更高的精度.