摘要
近年来,进化策略由于其无梯度优化和高并行化效率等优点,在深度强化学习领域得到了广泛的应用.然而,传统基于进化策略的深度强化学习方法存在着学习速度慢、容易收敛到局部最优和鲁棒性较弱等问题.为此,提出了一种基于自适应噪声的最大熵进化强化学习方法.首先,引入了一种进化策略的改进办法,在“优胜”的基础上加强了“劣汰”,从而提高进化强化学习的收敛速度;其次,在目标函数中引入了策略最大熵正则项,来保证策略的随机性进而鼓励智能体对新策略的探索;最后,提出了自适应噪声控制的方式,根据当前进化情形智能化调整进化策略的搜索范围,进而减少对先验知识的依赖并提升算法的鲁棒性.实验结果表明,该方法较之传统方法在学习速度、最优性收敛和鲁棒性上有比较明显的提升.
- 单位