摘要
针对海上多层水驱砂岩油田作业成本高、小层测试数据少所导致的产、吸状况不清的问题,提出一种可同时学习多种井况条件的小层产、吸剖面预测模型。首先综合考虑影响小层产、吸状况的静态地质条件和动态开发特征,筛选并构造出主控因素,建立样本数据库。然后构建了巧妙的循环将神经网络算法和智能优化算法进行融合,内层循环以反向传播(back propagation, BP)神经网络为模型框架,遍历所有井样本,实现多维主控因素与产、吸剖面的机器学习;中层循环以量子进化算法为优化手段,实现神经网络内部权重和阈值自动优化;外层循环以测试误差为控制条件,保证模型的可靠性与最优化。最后将产、吸剖面预测模型应用于渤海P油田,分别对73口油井和84口水井的样本数据进行交叉验证,结果表明模型的平均测试误差仅为6.60%、4.36%。示例井组经分层调配等措施的综合治理之后,实现了井组日增油63 m3/d,综合含水率下降6%。该研究成果对老油田的精细注水和优化调整具有一定的指导意义。