基于编码器解码器的序列到序列模型广泛应用于生成式自动文摘,但传统Seq2Seq模型会产生重复、偏离主题等问题。该文提出两点优化:一是全局信息编码,通过卷积和自注意力机制获取原文全局信息并将其传递到解码器;二是主题信息解码,从原文中提取重要实体并将其编码为主题向量,帮助解码器获取值得聚焦的信息,提升文本摘要的真实性和可靠性。在LCSTS上的实验表明,全局编码和主题解码相较之前的模型在各项Rouge指标上均有提升,融合二者的模型提升效果更为明显。