摘要
针对工业控制系统数据非线性、高纬度和不平衡等难题,本文从提高工业控制系统入侵检测的准确性入手,结合单类支持向量机算法,提出一种单类支持向量机异常检测方法。该方法在核主成分分析过程中加入Fisher-Score算法,实现了对数据集的特征提取,降低了后续单类支持向量机入侵检测模型训练和识别的复杂度;同时加入免疫克隆选择和协同进化等策略,采用分层协同免疫粒子群参数优化算法对单类支持向量机参数进行寻优,增强算法的综合性能,解决了基本粒子群算法在单类支持向量机参数寻优过程中存在的易陷入早熟收敛和局部最小值等问题;最后构建了基于优化后的单类支持向量机算法的入侵检测模型,并进行对比实验验证。实验结果表明:优化后的检测模型在训练时间、学习泛化能力和检测性能上都有明显提升。
- 单位